(资料图片)
1、ax^2+bx+c=0. (a≠0,^2表示平方)等式两边都除以a,得, x^2+bx/a+c/a=0, 移项,得: x^2+bx/a=-c/a, 方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2。
2、(配方)得 x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a, 即 (x+b/2a)^2=(b^2-4ac)/4a. x+b/2a=±[√(b^2-4ac)]/2a. (√表示根号)得: x=[-b±√(b^2-4ac)]/2a.。
相信通过一元二次方程的求根公式推导过程这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。
本文由用户上传,如有侵权请联系删除!